
Chapter 6
Introduction to X-Ray Absorption Spectroscopy

Paolo Fornasini

Abstract X-ray Absorption Fine Structure (XAFS) contains original information on
the local properties of materials. After a general introduction to the X-ray absorption
process, the attention is here focussed on the extended fine structure (EXAFS). The
main approximations that lead to a relatively simple and effective interpretation of
EXAFS spectra are reviewed; the peculiar effects of thermal disorder are stressed. The
basic instrumentation for EXAFS measurements is described and the most important
procedures of data analysis are presented.

6.1 A Phenomenological Introduction to XAFS

Let us consider a collimated X-ray beam, whose flux Φ0 is the number of photons
per unit time and unit cross-section. If the beam traverses a sample of thickness x ,
the flux is reduced according to the exponential law

Φ = Φ0 exp[−µ(ω)x] , (6.1)

where µ(ω) is the linear attenuation coefficient, which depends on the energy !ω of
X-ray photons and on the sample composition and density.

X-ray energies for most XAFS applications are between about 1 and 40 keV,
corresponding to wavelengths between 0.3 and 12 Å. (The relation between energy
!ω, in keV, and wavelength λ, in Ångström, is !ω = 12.4/λ). Two different basic
mechanisms contribute to the X-ray attenuation in this energy range (Fig. 6.1, left):
(a) in photo-electric absorption, one photon is absorbed from the beam and an atom
is ionized or excited, (b) in scattering, one photon is deflected from the original
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Fig. 6.1 Left X-ray absorption cross-sections for Germanium. Continuous line photoelectric
absorption, with the three L edges (1.217, 1.248 and 1.414 keV) and the K edge (11.103 keV);
dashed line elastic Thomson scattering; dotted line inelastic Compton scattering. Right Binding
energy of the levels K , L III e MV as a function of the atomic number Z

trajectory by the collision with an electron; scattering from one electron can be
elastic (Thomson) or inelastic (Compton). In the energy range from 1 to 40 keV,
photo-electric absorption is dominant, and we can approximate the total attenuation
coefficient µ of (6.1) with the photo-electric absorption coefficient.

Let us now focus on absorption spectroscopy [1]. When the energy !ω of X-ray
photons increases, the absorption coefficient µ(ω) decreases. This smooth behavior
is interrupted by sharp discontinuities, the absorption edges (Fig. 6.1, left), which
originate when the photons gain high enough energy to extract an electron from
a deeper level. The highest-energy absorption edges, the K edges, correspond to
the extraction of an electron from the deepest level (1s level). The following table
establishes the connection between high energy edges and core electronic levels.

Edge: MV MIV MIII MII MI LIII LII LI K
Core level: 3d5/2 3d3/2 3p3/2 3p1/2 3s 2p3/2 2p1/2 2s 1s

Since the binding energies of electrons increase monotonically with the atomic
number (Fig. 6.1, right), an edge energy corresponds to a well defined atomic species.

After absorption of an X-ray photon, an isolated atom can be either excited, if the
photon energy corresponds to the energy difference between an electronic core level
and an unoccupied bound level, or ionized, if the photon energy is larger than the
binding energy, so that the electron (photo-electron) is ejected from the atom.

In correspondence of an edge, the absorption coefficient exhibits the X-ray Absorp-
tion Fine Structure (XAFS) [1, 2]. For isolated atoms (noble gases, metallic vapors)
the XAFS is limited to a few eV around the edge, and reflects the transitions of
the core electron to unoccupied bound levels (Fig. 6.2, left). In molecular gases and
condensed systems the XAFS, strongly influenced by the presence of the atoms sur-
rounding the absorber one, can extend up to and beyond one thousand eV above the
edge (Fig. 6.2, right). Different regions of XAFS are customarily distinguished:
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Fig. 6.2 Fine structures at the K edges of Argon (left) [derived from L. G. Parratt, Rev. Mod. Phys.
31, 616 (1969)] and Germanium (right)

(a) A pre-edge and edge region, limited to a few eV around the edge (Fig. 6.2, left).
(b) The structure within 30÷50 eV above the edge is called XANES (X-ray

Absorption Near Edge Structure) or NEXAFS (Near Edge X-ray Absorption Fine
Structure) [2, 3]. From XANES (including the pre-edge and edge regions), informa-
tion can be obtained on the local electronic as well as geometric structure.

(c) The fine structure extending from the XANES region up to typically one
thousand eV, as in Fig. 6.2, right, is called EXAFS (Extended X-ray Absorption Fine
Structure). EXAFS contains information on the local geometric structure surrounding
a given atomic species. The interpretation of EXAFS is nowadays well established,
and easier than the interpretation of XANES [2, 4–9].

The following phenomenological picture can be of help to understand the origin
of EXAFS (Fig. 6.3). When an X-ray photon of high enough energy is absorbed
by an atom A, a core electron, whose orbital is small with respect to the atomic
size, is ejected from the atom. The kinetic energy of the ejected photo-electron
is the difference between the photon energy !ω and the core binding energy Eb.
The outgoing photo-electron is described by a wavefunction whose wavelength λ
decreases when the photon energy !ω increases. The absorption coefficient µ(ω) of
the isolated atom A is proportional to a superposition integral of the localised core
wavefunction and the outgoing wavefunction. If the absorber atom A is not isolated,
the photo-electron can be scattered by a neighbouring atom B, giving rise to an
incoming wavefunction. As a consequence, the total photo-electron wavefunction is
now a superposition of the outgoing and the scattered waves. The phase relationship
between the outgoing wave and the scattered wave, evaluated at the core site of atom
A, depends on the photo-electron wavelength and on the distance R beween atoms
A and B. The variation of the phase relationship as a function of photon energy !ω
influences the amplitude of the total wavefunction at the core site, giving rise to a
modulation of the absorption coefficient. The frequency of the EXAFS oscillations
depends on the distance between absorber and back-scatterer atoms. Their amplitude
is proportional to the number of back-scatterer atoms.
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(a) (b) (c)

Fig. 6.3 Schematic picture of the EXAFS phenomenon: a the X-ray photon impinging on atom A
(the black circle is the orbital of the core electron), b the outgoing photo-electron wave function
(the open circle is the core hole of atom A), c the final state superposition of the two wavefunctions,
outgoing from atom A and scattered from atom B

To obtain a quantitative interpretation of EXAFS one has to properly describe,
within the framework of suitable approximations, the process of photoelectric X-ray
absorption (Sect. 6.2) as well as the final state scattering wavefunction (Sect. 6.3).

Two main peculiarities characterize EXAFS: (a) the selectivity of atomic species,
which is obtained by tuning the X-ray energy at the corresponding absorption edge;
(b) the insensitivity to long-range order, due to the short mean free path of the
photo-electron, typically limited to about 10 Å. These peculiarities make EXAFS a
very appealing local structural probe. In many-atomic non-crystalline systems, like
amorphous alloys or oxide glasses, the atomic selectivity allows one to separately
study the environment of each component species. EXAFS is an invaluable tool
for systems in which the functional properties are due to individual atoms or small
clusters embedded in a matrix of different atomic species, such as heterogeneous
catalysts, active sites in biomolecules, impurities in semiconductors, luminescent
rare-earth atoms in crystals and glasses. Brilliant applications of EXAFS concern
the study of local structural properties of crystalline solids which are different from
the average properties detected by diffraction.

6.2 Photoelectric Absorption of X-Rays

In the energy interval between two edges (Fig. 6.1, left), the photo-electric absorption
coefficient depends on energy according to an approximate power law, which is
generally expressed as a function of the wavelength λ (Victoreen law)

µ ∝ C λ3 (6.2)

where C depends on the atomic number Z .
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6.2.1 Golden Rule and Further Approximations

The photo-electric absorption process can be described as follows [3, 10, 11].
An atom is initially in its ground state |Ψi ⟩ of energy Ei . When interacting with
the electromagnetic field, the atom can absorb an X-ray photon of energy !ω and
undergo a transition to a final state |Ψ f ⟩ of energy E f = Ei + !ω. The photon
energy is used to promote an electron from a core level to an unoccupied outer level
(excitation) or to the continuum of free states (ionization). The atomic final state is
characterized by the presence of a core hole. To account for EXAFS, ionization has
to be considered.

The absorption coefficient µ(ω) can be expressed (in S.I. units) as

µ(ω) = n σa(!ω) = (2!/ε0ωA2
0c) n

∑
f
w f i , (6.3)

where n is the number of atoms per unit volume, σa is the atomic absorption cross
section, ε0ωA2

0c/2! is the photon flux (A0 is the magnitude of the vector potential
of the electromagnetic field) and w f i is the probability of transition per unit time
(transition rate) from the initial state |Ψi ⟩ to the final state |Ψ f ⟩.

According to the Golden Rule of the time-dependent perturbation theory, a tran-
sition rate w f i can be expressed in terms of a matrix element between the initial
and final stationary states |Ψi ⟩ and |Ψ f ⟩. For a sinusoidal time dependence of the
electromagnetic field,

w f i = (πe2 A2
0/2!m2)

∣∣∣ ⟨Ψ f |
∑

j
eik·r j p j · η̂ |Ψi ⟩

∣∣∣
2
ρ(E f ) , (6.4)

where the sum is over all the electrons inside the atom, p j is the conjugate momentum
of the j-th electron, η̂ and k are the polarization unit vector and the wavevector of
the electromagnetic field, respectively (k = 2π/λ), and ρ(E f ) is the density of final
continuum states, with E f = Ei + !ω.

The calculation of the matrix element in (6.4) is simplified by a set of further
approximations.

6.2.1.1 One-Electron Approximation

EXAFS is due to the coherent superposition of outgoing and incoming photo-electron
wavefunctions. We focus our attention on the so-called elastic transitions, in which
only one core electron changes its state and the remaining N − 1 electrons (passive
electrons) simply relax their orbitals around the core hole. In the other possible
inelastic transitions, the primary core excitation is accompanied by the excitation
of outer electrons (shake-up and shake-off processes), so that the X-ray energy is
distributed over all the excited electrons. The measured absorption coefficient is the
sum of the elastic and inelastic contributions,
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µ(ω) = µel(ω) + µinel(ω). (6.5)

The elastic contribution is

µel(ω) ∝
∣∣∣ ⟨Ψ N−1

f ψ f | eik·r η̂ · p |Ψ N−1
i ψi ⟩

∣∣∣
2
ρ(ε f ) , (6.6)

where Ψ N−1 is the Slater determinant of the wavefunctions of the passive electrons.
The interaction Hamiltonian operates now only on one electron, of which ψ , r, p
and ε f are wavefunction, vector position, momentum and final energy, respectively.

6.2.1.2 Electric Dipole Approximation

The calculation of µel can be simplified by expanding the exponential in (6.6) and
truncating the expansion at the first term:

eik·r = 1 + ik · r − (k · r)2/2! ... ≃ 1. (6.7)

The electric dipole approximation is reasonable when |k · r|2 ≪ 1, say when the
radiation wavelength is much larger than the size of the system. In the one-electron
approximation, the electromagnetic field interacts only with a core orbital, whose
extension is smaller than the X-ray wavelength. The electric dipole approximation
is generally appropriate for the interpretation of EXAFS.

In the electric dipole approximation, (6.6) can be alternatively expressed in the
dipole-velocity form (6.8) or in the dipole-length form (6.9)

µel(ω) ∝
∣∣∣ ⟨Ψ N−1

f ψ f | η̂ · p |ψi Ψ
N−1

i ⟩
∣∣∣
2
ρ(ε f ) . (6.8)

∝ ω2
∣∣∣ ⟨Ψ N−1

f ψ f | η̂ · r |ψi Ψ
N−1

i ⟩
∣∣∣
2
ρ(ε f ) . (6.9)

Within the dipole approximation, the angular momentum selection rules hold:

∆ℓ = ±1, ∆s = 0, ∆ j = ±1, 0, ∆m = 0. (6.10)

For one-electron transitions, the selection rule ∆ℓ = ±1 implies that: (a) if the
initial core state has s symmetry (ℓ = 0, edges K and LI), the final state has p
symmetry (ℓ = 1); (b) if the initial core state has p symmetry, (ℓ = 1, edges LII and
LIII), the final state can be of both s or d symmetry (ℓ = 0 or ℓ = 2, respectively).
Dipole-forbidden transitions, due to higher-order terms of the expansion of (6.7), can
sometimes give non negligible contributions to the pre-edge and edge fine structure.
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6.2.1.3 Sudden Approximation

In the EXAFS region, the photo-electron energy is high enough that its interaction
with the passive electrons of the absorbing atom can be neglected. Within the sudden
approximation, the atomic wavefunctions can be factorized in the contributions ψi
and ψ f of the active electron and Ψ N−1

i and Ψ N−1
f of the passive electrons:

µel(ω) = n σel = n (πe2ω/ε0c)
∣∣ ⟨ψ f | η̂ · r |ψi ⟩

∣∣2 S2
0 ρ(ε f ) (6.11)

where the factor
S2

0 =
∣∣∣ ⟨Ψ N−1

f |Ψ N−1
i ⟩

∣∣∣
2

(6.12)

is the superposition integral of the passive electrons wavefunctions. Generally, S2
0 ≃

0.7–0.9. In virtue of a sum rule for photo-electric absorption, the total absorption
coefficientµ(ω)of (6.5) corresponds to the one-electron elastic absorption coefficient
of (6.11) in the hypothesis that passive electrons undergo no relaxation, i.e. S2

0 = 1.
The actual value of the superposition integral S2

0 < 1 thus measures the fraction of
total absorption due to the elastic transitions.

6.2.2 De-excitation Mechanisms

An atom with a core hole is unstable, and spontaneously tends to relax, filling the
core hole with an electron from an upper level and thereby reducing its energy. Two
de-excitation mechanisms are possible: (a) in the fluorescence mechanism, the relax-
ation energy is released to an outgoing X-ray photon; (b) in the Auger mechanism,
the relaxation energy is used to eject an (Auger) electron from an upper level. The
energies of fluorescence photons and Auger electrons depend on the energies of the
electron levels and univocally identify the atomic species.

The two de-excitation mechanisms are in competition. Their relative strengths is
measured by the fluorescence yield

ηs = Xs/(Xs + As) (6.13)

where s labels a given absorption edge (K, LI,…), Xs and As are the emission
probabilities of a fluorescence photon and an Auger electron, respectively. The flu-
orescence yield depends on the atomic number (Fig. 6.4, left). The intensity of the
fluorescence and Auger emissions depends on the probability of the previous X-rays
absorption, and can thus be used to measure the absorption coefficient (Sect. 6.5).

The total de-excitation probability per unit time is inversely proportional to the
core-hole lifetime. The deeper the core hole and the larger the atomic number Z ,
the larger is the number of upper levels from which an electron can drop to fill
the core hole and consequently the shorter is the core-hole lifetime τh (typically
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Fig. 6.4 Average fluorescence yield η (6.13) for the K, L and M edges (left) and width "h of the
K and LIII excited states (right) as a function of the atomic number Z

10−15 ÷10−16 s). The core-hole lifetime τh represents an upper limit for the time
allowed to the photo-electron for probing the local structure surrounding the absorber
atom. Because of the time-energy uncertainty relation, the core-hole lifetime is asso-
ciated with the energy width of the excited state"h ≃ !/τh . The width"h contributes
to the resolution of X-ray absorption experimental spectra. For a given edge, the larger
the atomic number Z , the lower is the lifetime τh and the larger is the energy width
"h (Fig. 6.4, right).

6.3 Basic EXAFS Theory

According to (6.11), the fine structure of the absorption coefficient µel(ω) reflects
the variation of the final photo-electron stationary state |ψ f ⟩, evaluated at the core
site of the initial state |ψi ⟩, as a function of the photon energy !ω. It is the final state
|ψ f ⟩ that contains structural information. The calculation of the photoelectron final
state |ψ f ⟩ in molecules and condensed matter can be made in several different ways.
The most effective approach for XAFS is based on the multiple scattering (MS)
formalism, which allows a unified interpretation over the entire energy range, from
edge to EXAFS. In the EXAFS region, the treatment can be much simplified within
the single scattering (SS) approximation, which leads to an effective parametrization
in terms of structural and thermal properties [2, 7, 9]. For concreteness, we consider
here the contribution of a K edge to the absorption coefficient.

6.3.1 The EXAFS Function

EXAFS oscillations (see for example Fig. 6.2, right) are conveniently represented as
a function of the magnitude of the photo-electron wavevector k = (2π/λ):
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k =
√

(2m/!2) ε f =
√

(2m/!2) (!ω − Eb) (6.14)

where ε f is the photoelectron energy and Eb is the core electron binding energy.
Let us consider the expression (6.11) for the elastic absorption coefficient, and

suppose for the moment that S2
0 = 1, say that inelastic transitions are negligible

(their contribution will be taken into account later on). In the EXAFS region, the
density of final states ρ(ε f ) varies slowly with energy, so that EXAFS oscillations
are entirely described by the matrix element.

If the absorber atom is isolated (as in monatomic gases), the final state |ψ0
f ⟩ is

simply an outgoing wave. The corresponding absorption coefficient

µ0(ω) ∝
∣∣∣ ⟨ψ0

f | η̂ · r |ψi ⟩
∣∣∣
2

(6.15)

is called atomic absorption coefficient and decreases monotonically as a function of
the photon energy !ω, according to the Victoreen empirical law, (6.2).

If the absorber atom is non-isolated (as in molecular gases and condensed systems)
the photo-electron can interact with the surrounding atoms and undergo scattering. In
the EXAFS region, the photo-electron energy is much larger than the electron–atom
interaction energy, so that the interaction causes a weak perturbation to the final state,
|ψ f ⟩ = |ψ0

f + δψ f ⟩ and the absorption coefficient becomes

µ(ω) ∝
∣∣∣ ⟨ψ0

f + δψ f | η̂ · r |ψi ⟩
∣∣∣
2
. (6.16)

The normalised EXAFS function is defined as

χ(k) = (µ − µ0)/µ0 (6.17)

and is expressed as a function of the wave-number k of (6.14). The amplitude of the
EXAFS oscillations typically ranges between 1 and 10 % of the absorption coefficient
of a given edge.

We can now insert the absorption coefficients (6.15) and (6.16) in the EXAFS
function (6.17) and express the matrix elements in the coordinate representation in
terms of superposition integrals of wave-functions. By neglecting the term of second
order in δψ f , the EXAFS function becomes

χ(k) =
2Re

∫ [
ψi (r) η̂ · r ψ0∗

f (r)
] [
ψ∗

i (r) η̂ · r δψ f (r)
]

dr
∫ ∣∣∣ψ∗

i (r) η̂ · r ψ0
f (r)

∣∣∣
2

dr
. (6.18)

The integral in the numerator of (6.18) contains the structural information and
is responsible for the EXAFS oscillations. The leading contribution to this integral
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Fig. 6.5 Pair of absorber A
and back-scatterer B atoms.
The open circle represents the
core orbital of atom A. The
large grey circles represent the
muffin-tin potential spheres

A B

I II III 

comes from the limited spatial region of the core orbital, which represents both the
source and the detector for the photo-electron that probes the surrounding structure.

6.3.2 Approximate Derivation of EXAFS

A number of equivalent derivations of the EXAFS function have been proposed
[6, 7, 12, 13], none of them sufficiently simple for an introductory account. In the
following, the basic concepts are highlighted from a phenomenological point of view.
Only ideal systems composed of atoms frozen at their equilibrium positions are at
first considered; thermal disorder is introduced later on.

6.3.2.1 Two-Atomic System

The simpler system consists of two atoms, an absorber one A and a back-scatterer
one B; let R be the distance between the two atoms (Fig. 6.5). We want to interpret
the EXAFS function within the single scattering (SS) formalism. For a given photon
energy !ω, the photo-electron quantum state is defined by the constant wavevector
k = 2π/λ of (6.14). The interaction of the photo-electron, ejected from the core
orbital of atom A, with both atoms A and B is generally approximated in terms of two
spherically symmetric potentials of regions I and III joined by an interstitial region
II of constant potential (muffin-tin approximation). The effect of the interaction is
accounted for in terms of suitable phase-shifts of the constant-k wavefunction.

The wavefunction ψi of the initial 1 s core state of angular momentum ℓ = 0 is
confined at the centre of region I. Also the final state wavefunction for the isolated
atom ψ0

f , of angular momentum ℓ = 1, has to be known only at the centre of region
I, in order to evaluate the superposition integrals of (6.15) and (6.18). Actually, the
explicit knowledge ofψi andψ0

f is not necessary to calculate the EXAFS function. It
is sufficient to evaluate the perturbation δψ f along the scattering path A → B → A.

At the centre of region I, corresponding to the core orbital, the outgoing photo-
electron wavefunction is ψ f = ψ0

f , the same as for an isolated atom. At the border
of region I, the radial part of the photo-electron wavefunction can be approximated,
for high enough energies (kr ≫ 1), as

ψ0
f (eikr/2kr) eiδ1 (6.19)

where the phase-shift δ1 takes into account the effect of the potential of region I.
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Let us now consider the interaction between the photo-electron and the atom B
in region III. If the photo-electron has high enough energy, only the interaction with
the inner electrons of atom B is important. We can then restrict the scattering to
a spatial region very small with respect to the interatomic distance R (small atom
approximation) and neglect the curvature of the spherical wave impinging on atom B
(plane wave approximation). Within these approximations, the process is described
in terms of a complex amplitude of back-scattering from atom B in the direction of
atom A, fB(k,π), which can be expressed as a function of the partial-wave phase-
shifts δℓ [14] as

fB(k,π) = (1/k)

∞∑

ℓ=0

(−1)ℓ (2ℓ+ 1) eiδℓ sin δℓ . (6.20)

At the border of region III, the radial part of the back-scattered wave is then

[
ψ0

f (eik RB /2k R) eiδ1
]

︸ ︷︷ ︸
wave impinging on B

fB(k,π)
[
(eikr ′

/r ′)
]

︸ ︷︷ ︸
wave scattered by B

(6.21)

where r ′ is the distance from atom B.
At last, for r ′ = R, say at the absorber core site, the final wave function can be

factorized as

ψ0
f (1/2k) eiδ1

︸︷︷︸
inter.

e2ik R/R︸ ︷︷ ︸
propag.

fB(k,π)︸ ︷︷ ︸
inter.

e2ik R/R︸ ︷︷ ︸
propag.

eiδ1
︸︷︷︸
inter.

. (6.22)

A further phase-shift δ1 is present in the last factor, to take into account the effect of
the potential of region I on the backscattered wavefunction. Equation (6.22) shows
that the perturbation δψ f due to the presence of atom B can be expressed as a
sequence of interaction factors and propagators. Such basic structure is shared by
alternative, more sophisticated approaches, able to take into account also MS effects.

If the result expressed by (6.22) is properly inserted into (6.18), one gets

χ(k) = 3(η̂ · R̂)2 (1/k R2) Im
{

fB(k,π) e2iδ1 e2ik R
}

. (6.23)

By separating magnitude and phase of the complex backscattering amplitude and
grouping the phase terms,

fB(k,π) e2iδ1 = | fB(k,π)| eiφ, (6.24)

one can write (6.23) in the purely real form:

χ(k) = 3(η̂ · R̂)2 (1/k R2) | fB(k,π)| sin [2k R + φ(k)] . (6.25)
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Basically, the EXAFS signal has a sinusoidal behaviour in the k space, with
frequency 2R proportional to the inter-atomic distance. The phase of the sine function
is perturbed by the phase-shift φ(k), while the amplitude is modulated by | fB(k,π)|.
The k dependence of backscattering amplitudes and phaseshifts is different for differ-
ent atomic species. For low Z values, the backscattering amplitude decreases fast and
monotonously when k increases. When Z increases, the amplitude becomes higher
at high k values, and the overall behavior becomes more and more structured. The
behavior of the scattering amplitude and phase-shift of the EXAFS signal can give
approximate information on the atomic species of the scattering atom. For realistic
spherical waves (say if the plane wave approximation is released), phaseshifts and
amplitudes weakly depend also on the interatomic distance: φ(k, r), | f (k,π, r)|.

6.3.2.2 Many-Atomic Systems

Let us now consider a system composed of more than two atoms. The generalization
of (6.25) is immediate, so long as multiple scattering of the photo-electron can be
neglected: the EXAFS function can be built up as the sum of many two-atomic
contributions, with different interatomic distances Ri from the absorber atom.

The photo-electron emission is more probable in the direction of polarisation
of the photon beam. When dealing with macroscopically ordered systems, such as
single crystals, the dipole term η̂ · R̂ can be exploited to get anisotropic structural
information. Very often, however, EXAFS measurements are made on isotropic sam-
ples, such as polycrystalline powders, amorphous materials, liquids or gases. In the
following, we consider only isotropic samples, for which the polarization term can
be averaged, ⟨η̂ · R̂⟩ = 1/3 , leading to a simplified treatment which neglects the
angular part of the wavefunctions. For an isotropic sample, the EXAFS function is

χ(k) = (1/k)
∑

j
(1/R2

j ) Im
{

f j (k,π) e2iδ1 e2ik R j
}

, (6.26)

where R j is the distance of the j-th atom from the absorber atom.

6.3.2.3 Inelastic Effects

The simple treatment leading to (6.26) neglects inelastic effects. Two types of inelas-
tic effects are generally distinguished: intrinsic and extrinsic, referring to many-body
interactions within the absorber atom and to the photo-electron mean free path,
respectively.

Intrinsic inelastic effects are due to the multiple excitations within the absorber
atom (Sect. 6.2), which give rise to the inelastic channel µinel of the absorption
coefficient in (6.5). Multiple excitations modify the photo-electron energy and the
interference conditions between outgoing and incoming waves. The net effect is a
reduction of the coherent EXAFS signal with respect to that expected for purely
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Fig. 6.6 Photo-electron mean
free path as a function of
wavenumber k. The values
λe measured for different
elements are included between
the two continuos lines. The
dashed lines include the λh
values for the K edges of
atoms with Z between 30
and 50
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elastic excitations. The fraction of total absorption giving rise to elastic excitations is
measured by the superposition factor S2

0 defined in (6.12). Intrinsic inelastic effects
are thus taken into account in (6.26) by the factor S2

0 , which typically amounts to
0.7–0.9.

To the photo-electron mean free path λ two distinct phenomena contribute: (a) the
core-hole lifetime τh (Sect. 6.2), depending on the atomic number Z , which estab-
lishes the distance λh = vτh the photo-electron can travel before the de-excitation
of the absorber atom takes place (Fig. 6.6, dashed lines); (b) the energy-dependent
photo-electron mean-free path λe(k), caused by the inelastic collisions with other
electrons outside the absorber atom (Fig. 6.6, continuous lines).

The actual value of λ is given by

1/λ = 1/λh + 1/λe. (6.27)

At low energies, in the XANES region, the mean free path is determined by λh , while
in the EXAFS region the contribution of λe is predominant (Fig. 6.6).

The mean free path is generally taken into account in the EXAFS formula by a
phenomenological factor exp[−2R j/λ(k)], with λ ≃ 5 ÷15 Å. The mean free path
factor progressively reduces the amplitude of EXAFS oscillations when R j increases,
contributing to make EXAFS insensitive to long range order.

To summarize, the EXAFS equation taking into account inelastic effects is:

χ(k) = (S2
0/k)

∑
j

[
e−2R j /λ(k)/R2

j

]
Im

{
f j (k,π) e2iδ1 e2ik R j

}
(6.28)

6.3.2.4 Coordination Shells

If the backscattering atoms can be grouped into coordination shells, each one
containing Ns atoms of the same species at the same distance Rs from the absorber
atom, it is convenient to re-write (6.28) separating the contributions of the different
coordination shell:

χ(k) = (S2
0/k)

∑
s

NsIm
{

fs(k,π) e2iδ1
[
e−2Rs/λ(k)/R2

s

]
e2ik Rs

}
. (6.29)
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The sum is now over the index s, which labels the coordination shells. The number
of atoms Ns is the coordination number of the shell s.

6.3.2.5 Multiple Scattering

Multiple scattering (MS) phenomena, very important in the XANES region, are
generally quite weak in the EXAFS region. To take into account MS effects, the
absorption coefficient is conveniently written as

µ(k) = µ0(k) [1 + χ2(k) + χ3(k) + χ4(k) + · · · ], (6.30)

where the termsχp of the sum are distinguished by the number p of legs of the scatter-
ing paths. The term χ2(k) ≡ χ(k) corresponds to the single scattering contributions
up to now considered. In the EXAFS region, the series (6.30) is fast convergent. It has
been demontrated [15] that the contribution of MS paths can be expressed, similar to
the SS contribution, as the product of an amplitude factor and an oscillating factor:

χp(k) = Ap(k, {r}p) sin
[
k Rp + φp(k, {r}p)

]
, (6.31)

where {r}p represents the set of all vector distances inside the path, Rp is the total
path length, and Ap and φp are functions depending on the potential acting on the
photo-electron.

6.3.3 Disorder Effects on EXAFS

Let us come back to the SS approximation. Equation (6.29) refers to the unphysical
situation of a system of atoms frozen at their equilibrium positions. In real systems,
atoms are affected by thermal vibrations, whose amplitude increases with temperature
but, for quantum reasons, is not negligible even near zero kelvin. The period of
atomic vibrations (≃10−12 s) is much larger than the photo-electron time of flight
(10−16 ÷ 10−15 s). An EXAFS spectrum, resulting from the contributions of a very
large number of photo-electrons, samples a very large set of instantaneous atomic
configurations, corresponding to a distribution of instantaneous interatomic distances
for each scattering path.

The distribution of interatomic distances can be further enlarged and modified
by the presence of structural disorder. For example, distorted coordination shells
are characterized by two or more slightly different interatomic distances. Another
example are systems in which the absorber atom has at least two structurally different
sites, which cannot be discriminated as different coordination shells. A different kind
of disorder is compositional disorder, due to the presence of atoms of different species
in the same coordination shell.
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6.3.3.1 EXAFS Formula Including Disorder

Let us consider a coordination shell containing only one atomic species (say
without compositional disorder). Due to disorder, the distance between absorber and
back-scatterer atoms varies according to a probability distribution ρ(r). The EXAFS
equation for one coordination shell becomes [2]:

χs(k) = (S2
o/k) NsIm

⎧
⎨

⎩ fs(k,π) e2iδ1

∞∫

0

P(r, λ) e2ikr dr

⎫
⎬

⎭ , (6.32)

where the effective EXAFS distribution P(r, λ) = ρ(r) (e−2r/λ/r2) includes all the
r -dependent factors.

The fundamental problem of EXAFS analysis is to recover the real distribution
ρ(r) from the experimental spectrum χ(k). No exact solution can be given to this
problem, because every experimental spectrum has a finite extension, within the
values kmin and kmax. In particular, for kmin ≤ 2 ÷ 3 Å−1 the EXAFS signal cannot
generally be utilized, because of: (a) difficulty in determining the atomic absorption
coefficient µ0 in the vicinity of the edge, (b) effects of the core-hole lifetime on the
low-energy electrons, (c) influence of multiple scattering processes.

The problem of recovering ρ(r) from χ(k) is generally solved by hypothesising
physically sound structural models and optimising the parameters of their distribu-
tions ρ(r) by best fit of (6.32) to the experimental EXAFS spectrum [16].

6.3.3.2 Parametrization of EXAFS Formula

For many applications, the extent of disorder is sufficiently small to allow the expres-
sion of the EXAFS formula in terms of a few standard parameters. EXAFS formula
(6.32) can then be expressed as

χs(k) = S2
o
k

Ns | fs(k,π)| e−2C1/λ

C2
1

e−2k2C2+2k4C4/3 ··· sin

[

2kC1 − 4k3C3
3

... + φ(k)

]

,

(6.33)
where the parameters Ci are the cumulants of the effective distribution P(r, λ)
[17, 18]. According to probability theory, the cumulants characterise the position,
width and shape of a distribution.The lowest-order cumulants have simple interpreta-
tions: C1 is the mean value, C2 is the variance and C3 is a measure of the asymmetry
of the distribution.

Actually, one is interested in the cumulants C∗
i of the real distribution ρ(r).

The first cumulant of the real distribution ρ(r) is significantly larger than the first
cumulant of the effective distribution, as a consequence of the spherical nature of the
photo-electron wave and its limited mean free path:
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Fig. 6.7 Parametrized models of the real distribution ρ(r) of interatomic distances. Left Gaussian
distribution, characterized by the average value ⟨r⟩ = C∗

1 and the standard deviation σ = C∗
2 . Right

Asymmetric distribution, characterized by one more parameter, the third cumulant C∗
3

C∗
1 ≃ C1 + (2C2/C1) (1 + C1/λ). (6.34)

The difference between C1 and C∗
1 , of the order of some 10−3 Å, is automatically

taken into account by most data analysis packages. The difference between higher-
order cumulants of the two distributions is generally negligible.

In some cases, the cumulant expansion can be truncated at the second order term,
and (6.33) reduces to the so called standard EXAFS formula

χs(k) = S2
o

k
Ns | fs(k,π)| e−2C1/λ

C2
1

e−2k2C2 sin [2kC1 + φ(k)] , (6.35)

which amounts to consider a gaussian effective distribution P(r, λ), which corre-
sponds with good approximation to a gaussian real distribution ρ(r) (Fig. 6.7, left):

ρ(r) = (1/σ
√

2π) exp
[
−(r − ⟨r⟩)2/2σ 2

]
, (6.36)

where C∗
1 = ⟨r⟩ is the average distance and C∗

2 = σ 2 = ⟨(r − ⟨r⟩)2⟩ is the variance.
The gaussian approximation, generally reliable for the second and outer coordination
shells, is often unfit for the first coordination shell, where the asymmetry of the pair
interaction potential is more influent.

For the first coordination shell it is higly recommended to add the third cumulant
C∗

3 = ⟨(r −⟨r⟩)3⟩ (mean cubic relative displacement) to account for the distribution
asymmetry (Fig. 6.7, right):

χs(k) = S2
o

k
Ns | fs(k,π)| e−2C1/λ

C2
1

e−2k2C2 sin
[

2kC1 − 4k3C3

3
+ φ(k)

]
. (6.37)
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6.3.4 Summary

For each coordination shell, the following parameters can in principle be obtained
from (6.35) or (6.37): (a) the coordination number N, (b) the average inter-atomic
distance C∗

1 = ⟨r⟩, (c) the Debye-Waller factor exp[−2k2σ 2], where σ 2 = C∗
2 is the

variance of the real distribution of distances and contains information on both thermal
and structural disorder, (d) the third cumulant C∗

3 , which measures the asymmetry
of the real distribution of distances.

To obtain the aforementioned parameters, one has however to know the phase-
shifts φs and the backscattering amplitudes | fs(k,π)| for each coordination shell, as
well as the inelastic terms S2

0 and λ. Such quantities can sometimes be experimen-
tally obtained from reference samples of known structure. More frequently, they are
nowadays calculated ab initio [15] by a number of easily available software packages
[19–21], with a degree of accuracy sufficient for most applications.

Equations (6.35) and (6.37) are based on the single scattering (SS), plane wave
and small disorder approximations. Only the first-shell signal can be safely analysed
within the SS approximation, since multiple scattering (MS) paths correspond to
longer effective distances. For the outer shells, MS events can be not negligible,
in particular when collinear paths are present. The treatment of the outer shells
including MS contributions, as well as the calculation of backscattering amplitudes
and phase-shifts within the spherical wave formalism, are nowadays available in most
data analysis packages. The cumulants parametrisation of (6.33), (6.35) and (6.37)
is valid only for relatively small disorder. For large disorder, one should use the
general (6.32) and try to build up physically sound models for ρ(r) [16].

6.4 Interpretation of EXAFS Parameters

To better grasp the physical meaning of the structural information obtainable from
EXAFS, let us focus the attention on the first coordination shell of a structurally
ordered system, such as a crystal, and compare the effects of purely thermal disorder
on the EXAFS signal and on the Bragg diffraction patterns (Fig. 6.8, left) [22, 23].

Let R0 be the equilibrium distance between the absorber and back-scatterer atoms
and ua and ub be their instantaneous thermal displacements. The instantaneous dis-
tance between the two atoms is

r = R0 +∆u, (6.38)

where ∆u = ub − ua . The projections of the relative displacement ∆u parallel and
perpendicular to the inter-atomic bond (Fig. 6.8, left) are given by, respectively,

∆u∥ = R̂ ·∆u and ∆u2
⊥ = (∆u)2 −∆u2

∥ . (6.39)
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Fig. 6.8 Left Instantaneous displacements uaand ub (top) and relative displacement∆u = ub − ua
(bottom), whose projections of (6.39) are along the dotted line and in the vertical grey disc. Right
Atomic thermal ellipsoids measured by Bragg diffraction (top) and relative thermal ellipsoid
sampled by EXAFS (bottom)

From (6.38) and (6.39), one can express the instantaneous distance r , to first order,
as:

r ≃ R0 + ∆u∥ + ∆u2
⊥/2R0 . (6.40)

6.4.1 EXAFS Distance and Crystallographic Distance

The first cumulant of the real distribution ρ(r) is the average value ⟨r⟩ of the
instantaneous distances:

⟨r⟩ = ⟨|rb − ra |⟩ (6.41)

According to (6.40),

⟨r⟩ ≃ R0 + ⟨∆u∥⟩ + ⟨∆u2
⊥⟩/2R = R + ⟨∆u2

⊥⟩/2R (6.42)

where R = R0 + ⟨∆u∥⟩ is the crystallographic distance, say the distance

R = |⟨rb⟩ − ⟨ra⟩| (6.43)

between average atomic positions, measured by Bragg scattering, including the
thermal expansion ⟨∆u∥⟩ (anharmonicity effect). The last term in (6.42) is propor-
tional to the perpendicular Mean Square Relative Displacement (MSRD) ⟨∆u2

⊥ ⟩,
which is always positive. The average distance ⟨r⟩ is thus always larger than the
crystallographic distance R; EXAFS and Bragg scattering give different and com-
plementary information on the inter-atomic distance in crystals. (In non-crystalline
systems, EXAFS and scattering are instead both sensitive to the average distance ⟨r⟩).

The temperature dependence of ⟨r⟩ for the first coordination shell corresponds to
the bond thermal expansion. Since ⟨∆u2

⊥⟩ increases when the temperature increases,
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Fig. 6.9 Left Expansion of the bond distance Te–Cd in CdTe measured by EXAFS (full circles)
compared with the crystallographic expansion (continuous line). Right Parallel MSRD (full circles)
and half perpendicular MSRD (diamonds) for the Te–Cd distance in CdTe compared with the sum
of the MSDs from Bragg scattering (open circles); the dashed lines are Einstein models

the bond expansion measured by EXAFS is larger than the thermal expansion
measured by Bragg diffraction; a quantitative example from [24] is given in Fig. 6.9
(left).

6.4.2 Parallel and Perpendicular MSRDs

The second cumulant is the variance σ 2 = ⟨(r − ⟨r⟩)2⟩ of the real distribution ρ(r),
say the parallel Mean Square Relative Displacement (MSRD); to first order

σ 2 ≃ ⟨∆u2
∥⟩ =

〈
[R̂ · (ub − ua)]2

〉

= ⟨(R̂ · ub)
2⟩ + ⟨(R̂ · ua)2⟩ − 2 ⟨(R̂ · ub)(R̂ · ua)⟩. (6.44)

The first two terms on the right of (6.44) are the independent Mean Square Dis-
placements (MSD) of absorber and back-scatterer atoms, which can be obtained from
the refinement of Bragg scattering patterns. The third term in (6.44), the Displace-
ment Correlation Function (DCF), depends on the correlation of atomic motions. The
stronger is the correlation, the smaller is the parallel MSRD ⟨∆u2

∥⟩. The correlation
term DCF decreases with increasing distance and vanishes for very large distances.

The perpendicular MSRD ⟨∆u2
⊥⟩ can be calculated by inverting (6.42) if R is

known from Bragg scattering experiments. For isotropic relative atomic displace-
ments, one expects that ⟨∆u2

⊥ ⟩/2 = ⟨∆u2
∥⟩. Actually, one generally finds that the

ratio ⟨∆u2
⊥ ⟩/2⟨∆u2

∥⟩ is significantly larger than one, corresponding to disc-shaped
relative thermal ellipsoids.

The temperature dependence of EXAFS parameters contains original information
on the local dynamical behaviour of systems. The comparison of the experimental
temperature dependence with theoretical expectations is a good check of the quality of
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experimental data and of the soundness of the data analysis procedures. An example
of temperature dependence of MSRDs [24] is given in Fig. 6.9 (right).

The parallel MSRD σ 2 = ⟨∆u2
||⟩ of a given atomic pair in a crystal can be

accounted for, in the harmonic approximation, in terms of normal vibrational modes:

σ 2(T ) = 1
N

∑

q,s

⟨|Q(q, s, t)|2⟩
∣∣∣∣
(wb(q, s)eiq·R

√
mb

− wa(q, s)√
ma

)
· R̂

∣∣∣∣
2

(6.45)

where N is the number of primitive cells, the sum is over the normal modes (wavevec-
tor q, branch index s), the eigenvectors w give the direction of atomic motion and
Q(q, s, t) is the temperature-dependent normal coordinate of mode (q, s):

⟨|Q(q, s, t)|2⟩ = ⟨E(q, s)⟩
ω2(q, s)

= !
2ω(q, s)

coth
!ω(q, s)

2kT
. (6.46)

Equation (6.46) is of little use in EXAFS applications. The temperature depen-
dence of the parallel MSRD is commonly accounted for by simpler phenomenolog-
ical models. In the correlated Debye Model, only acoustic branches with a linear
dispersion relation are considered and the first Brillouin Zone is substituted by a
Debye sphere of radius qD . The maximum frequency ωD = qDvs is the Debye fre-
quency. The sum over normal modes of (6.45) becomes an integral over the Debye
sphere:

σ 2(qD, T ) = 3!
q3

Dm

qD∫

0

dq q2 1
ω

coth
!ω

2kT

[

1 −
sin(q R0

j )

q R0
j

]

,

where the second term in square parentheses accounts for correlation. The Debye
model satisfactorily reproduces the temperature dependence of the parallel MSRD.
The Debye temperature is however generally different for different coordination
shells, and different from the Debye temperatures obtained by other techniques.
Only for monatomic crystals with one atom per primitive cell are the Debye temper-
atures of different coordination shells very similar and comparable with the Debye
temperatures from other techniques.

The alternative Einstein model is

σ 2(ωE , T ) = !
µωE

[
1
2

+ 1
e!ωE /kT − 1

]
= !

2µωE
coth

(
!ωE

2kT

)
, (6.47)

where µ is the reduced mass of the absorber–backscatterer atomic pair. The Einstein
model depends on one parameter, the angular frequency ωE , which is different
for different coordination shells. The Einstein frequency ωE is connected to a
bond-stretching effective force constant k0 = µω2

E , which gives a quantitative esti-
mate of the bond strength.
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Fig. 6.11 Schematic picture of a Synchrotron Radiation laboratory for XAFS experiments

6.4.3 Structural Disorder

The contributions of thermal and structural disorder to the distribution of interatomic
distances can often be disentangled by performing temperature dependent EXAFS
measurements. The procedure is exemplified in Fig. 6.10 for the case of amorphous
and crystalline germanium. In both cases, the first-shell coordination number is
N = 4. The nearest-neighbours distance is about 0.015 Å larger in a-Ge than in
c-Ge (Fig. 6.10, left); the thermal expansion is however very similar. The effect of
structural disorder is evident in the plot of the second cumulants (Fig. 6.10, right) as
a positive vertical shift of the a-Ge data with respect to the c-Ge data; the temperature
dependence (thermal contribution) is again very similar in a-Ge and in c-Ge.

6.5 Experimental Techniques

The XAFS technique requires the measurement of the X-ray absorption coefficient
as a function of photon energy. A laboratory for X-ray absorption spectroscopy with
Synchrotron Radiation (Fig. 6.11) is generally composed of: (a) an optical apparatus,
containing a monochromator and one or more X-ray mirrors; (b) a measurement
apparatus, containing sample holders and detectors for measuring the absorption
coefficient.



202 P. Fornasini

6.5.1 Optical Apparatus

Basic tasks of a monochromator are: (a) selecting a beam of energy E = !ω, defined
within a width∆E , from the continuous Synchrotron Radiation spectrum; (b) execut-
ing scans over predefined energy ranges. X-ray monochromators are perfect crystals,
working according to the Bragg law:

2 dhkl sin θb = n λ, (6.48)

where dhkl is the distance between the (hkl) crystallographic planes, θb is the inci-
dence (Bragg) angle, n is an integer and λ is the X-ray wavelength. The energy scan
is obtained by rotating the crystal around an axis parallel to the crystallographic
planes and normal to the beam direction. It is worth remembering some important
properties: (a) only crystallographic planes for which the structure factor F(hkl) ̸= 0
give rise to diffraction; (b) the maximum wavelength selected for a given family of
planes (hkl) is λ = 2 dhkl, in correspondence with normal incidence; (c) in addition
to the wavelength λ = 2d sin θb (fundamental), also wavelengths λ/n (harmonics)
are selected. Harmonics are sources of noise in XAFS spectra. For X-ray energies
higher than 2 keV, the crystals most frequently utilized are silicon and germanium.

The X-ray beam is diffracted by the monochromator within a finite angular interval
around the Bragg angle θb. The profile of the diffracted intensity as a function of the
angle is called rocking curve. The width of the rocking curve (Darwin width) amounts
to a few arc-seconds (1′′ = 4.8 × 10−6 rad). The Darwin widths are always larger for
fundamental reflections than for harmonics. In general, X-ray monochromators for
synchrotron radiation are based on consecutive Bragg reflections from two parallel
crystals. In this way, the outgoing beam maintains the horizontal direction. By slightly
detuning the Bragg angles of the two crystals and exploiting the smaller Darwin width
of harmonics with respect to the fundamental wavelength, it is possible to reduce the
harmonic content of the outgoing beam. Besides, if one of the two crystals is thin
enough to be curved, is can focus the beam in the horizontal plane.

The energy resolution ∆E of the monochromatic beam depends on two factors:
(a) the Darwin width of the crystal; (b) the vertical angular divergenceΩ of the beam:
to a good approximation, Ω = (d + s)/ℓ, where s is the vertical size of the source,
d is the aperture of the collimating slits and ℓ is the distance between the source and
the monochromator. The relative resolution can be easily obtained by differentiating
the Bragg law, (6.48):

∆E/E = ∆λ/λ = ∆Θ cotgθb , (6.49)

whereΘ (in radians) is the convolution between Darwin width and beam divergence.
Typically, ∆E/E ∼ 10−4 ÷10−5.

The monochromator is generally accompanied by one or more X-ray mirrors,
whose aims are: (a) to reject the harmonics; (b) to collimate and focalize the beam.
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X-ray mirrors are based on total reflection. Basically, the index of refraction can be
expressed as

n = 1 − δ − iβ. (6.50)

The imaginary part β is proportional to the absorption coefficient µ. The real part
1 − δ is negative for X-rays. δ, which is proportional to the density ρ of the material
and to λ2, is very small, of the order of 10−6 ÷10−5. For small enough incidence
angles, total external reflection occurs. The critical angle depends on the wavelength,
θc ∝ λ

√
ρe, and is of the order of milliradians. By properly choosing the incidence

angle of the beam on the mirror, it is possible to reflect only the fundamental wave-
length, rejecting the harmonics. Besides, by slightly bending the mirror surface it is
possible to focalize the beam (typically in the vertical plane). Because of the small
values of the critical angle θc, the longitudinal size and the bending radius of the
X-ray mirrors are very large.

6.5.2 Measurement Apparatus

The physical and chemical environment of the sample can be controlled by properly
choosing the sample-holder. Cryostats (liquid N down to 77 K or liquid He down
to 4 K) or ovens allow one to vary the sample temperature. Low temperatures are
currently used to reduce the thermal damping of EXAFS. By suitable temperature
scans, one can study phase transitions, local thermal expansion, lattice dynamics,
etc. Different types of high pressure cells are used to perform measurements up to
tens of GPa. Chemical reactions, like catalysis, can be studied in suitable reactors.

Different instrumental configurations have been devised to measure the absorp-
tion coefficient according to (6.1): µ = ln(Φ0/Φ)/x . Let us discuss here the most
frequently used; further information can be found in [25].

6.5.2.1 Direct Transmission Measurement

The photon fluxes Φ0 and Φ can be directly measured in front of and behind the
sample. In general, the two detectors are ionization chambers with plane parallel
electrodes, some tens of centimeters long. The efficiency of ionization chambers can
be tailored to different X-rays spectral regions by varying the atomic species and the
pressure of the filling gas. The output of ionization chambers are two electric currents
I0 and I of low intensity (typically 10−10 − 10−8 A). The absorption coefficient µ(ω)

is related to the I0 and I signals by

µ(ω)x = ln(Φ0/Φ) = ln(I0/I ) − ln C(ω), (6.51)

where C(ω) is a smoothly varying function, determined by the ionization chambers
response, which can be easily subtracted in data analysis.
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To optimize the signal to noise ratio, the sample thickness has to be of the order
of about 10µm. When the sample is a powder, compressed in a pellet or deposited
on a thin film, one must carefully avoid holes or inhomogeneities, which could
cause spurious variations of the EXAFS amplitude. A rule of thumb is to verify the
similarity of EXAFS spectra obtained from samples of different thicknesses.

Transmission measurements are preferred, when possible, in virtue of their eas-
iness and accuracy. In some cases, however, they are not suitable, for example for
diluted samples or for surface measurements.

6.5.2.2 Fluorescence Detection

For diluted absorbing species or for very thin samples one resorts to fluorescence
measurements, in which the intensity I f of the fluorescence emitted at the fixed fre-
quencyω f by the absorbing species A, as a result of radiative de-excitation (Sect. 2.3),
is measured as a function of the incident X-rays energy !ω. If both the impinging (I0)
and the fluorescence (I f ) beams make an angle of 45◦ with the sample surface, the
noise due to elastically scattered photons is minimised and fluorescence equations
are particularly simple.

In this geometry, for a thick sample one can show that [6]

I f (ω) = I0(ω)
Ω

4π
η

µA(ω)

µtot(ω) + µtot(ω f )
. (6.52)

The fluorescence intensity I f is proportional to the impinging flux I0, to the solid
angle Ω/4π of detector acceptance and to the fluorescence yield η. The fraction
in (6.52) shows that the fluorescence intensity I f allows a direct measurement of µA
only when µA ≪ µtot, say for very diluted samples. For thick non diluted samples
fluorescence measurements give rise to distortions in the EXAFS amplitude.

For a thin sample (for example a thin film) one cas show that

I f (ω) ∝ µA(ω). (6.53)

Ideal fluorescence detectors should maximise the acceptance angle and minimise
the background due to Compton scattering, unwanted fluorescence lines, Bragg
peaks, etc. Various alternative solutions, with different performances, are presently
available: crystal monochromators, filters and Soller slits with scintillation detectors,
solid-state detectors.

6.5.2.3 Electrons Detection

To study surface properties, it is convenient to measure the flux of photoelectrons
and/or Auger electrons emitted as a consequence of atomic de-excitation after X-ray
absorption. The intensity of both fluxes is proportional to the absorption coefficient.

http://dx.doi.org/10.1007/978-3-642-55315-8_2
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However, the energy of photoelectrons varies when the photon energy varies, while
the energy of Auger electrons is characteristic of the atomic species. Since electrons
have a mean free path of the order of 5–10 Å, only Auger and photoelectrons directly
generated in the vicinity of the surface can be detected. The inelastic collisions of
both Auger and photoelectrons give however rise to secondary electrons, with a large
spread of energies, whose escape depth can be of the order of 50–100 Å.

For different requirements one makes use of different detection schemes: (a)
The detection of only Auger electrons, by a detector with a narrow energy window
(AEY, Auger electrons yield) is particularly suited to study the environment of atoms
adsorbed on a surface of different composition (Surface EXAFS, or SEXAFS) [2]
(unwanted contributions from photoelectrons can however seriously contaminate the
signal). (b) One can detect a large fraction of both Auger electrons and photoelectrons
and their secondary, by a large window detector (PEY, partial electrons yield). (c)
One can detect all emitted electrons (TEY, total electron yield). The TEY detection
is sometimes used to study the surface XAFS of bulk materials: in this case one can
show that the full TEY signal is proportional to the absorption coefficient.

6.5.2.4 Energy Dispersive XAFS

In Energy dispersive XAFS (EDXAS), a large non-monochromatized beam impinges
on a curved crystal “poly-chromator”; different parts of the beam impinge on different
regions of the crystal at different Bragg angles, corresponding to different energies,
which typically can cover the entire EXAFS interval. The curved crystal focalizes
the outgoing monochromatic beams on a single point, where the sample is placed.
The sample is thus simultaneously crossed by beams of all the energies within the
EXAFS interval. Once the sample has been crossed, the beam is dispersed on a
position sensitive detector, where the entire EXAFS spectrum is simultaneously
collected. By this method, the beam can be focalised on a very small sample and the
acquisition times can be reduced even to a few milliseconds.

6.6 EXAFS Analysis

A number of reliable software packages are available to perform the EXAFS analysis
[19–21]. A good understanding of the involved procedures is essential for their
sensible use. The most relevant analysis steps are summarised here.

6.6.1 Extraction of the EXAFS signal

The extraction of the normalised EXAFS function χ(k) from the experimental signal
is in principle different for different detection methods (transmission, fluorescence,
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Fig. 6.12 Left Experimental absorption signal (continuous line) and extrapolation of the pre-edge
behavior (dotted line). The difference is µx relative to the K edge. Right Evaluation of the atomic
absorption coefficient (dashed line) by a polynomial spline

electron yield, etc.) [4]. Let us consider here the case of transmission measurements
(Sect. 4.2) and focus on the absorption spectrum at the K edge of a given element
within a compound. According to (6.51), the output of the measurement is

ln(I0/I ) = ln(Φ0/Φ) + ln C(ω) = µtot(ω)x + ln C(ω) , (6.54)

where µtot(ω) is the total absorption coefficient and x is the thickness of the sample.
The first step of the analysis consists in extracting the contribution µ(ω)x of the

K edge of the selected element from the experimental signal:

µ(ω)x = ln(I0/I ) − µn(ω)x , (6.55)

where µn is the contribution of all the other excitations of the selected element
plus the excitations of the other elements of the compound; µn x includes also the
contribution of C(ω) of (6.54). In the pre-edge energy region, µn x = ln(I0/I ).
Above the edge energy, µn x is estimated by a suitable extrapolation of the pre-edge
behavior (Fig. 6.12, left).

The photo-electron wavenumber k is defined in (6.14). In general, the core electron
binding energy Eb is unknown, and k is experimentally determined as

k =
√

(2m/!2) (!ω − Es) = 0.51233
√

!ω − Es, (6.56)

where Es is a threshold energy conventionally chosen in correspondence of some
characteristic point of the edge, typically the first inflection point. The last member
in (6.56) holds for wavenumbers k measured in Å−1 and energies !ω in eV.

The difference E0 = Eb − Es is a priori unknown. If the quantitative analysis is
made by comparison with the experimental EXAFS of a reference sample, the same
criterion must be used in determining Es for both samples; E0 is anyway treated as
a free parameter to be optimized by best-fit. If the analysis is made by comparison
with theoretical simulations, the E0 value is a free parameter, again to be optimized
by best-fit.

http://dx.doi.org/10.1007/978-3-642-55315-8_4
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Fig. 6.13 EXAFS of amorphous germanium at 77 K (left), and of crystalline germanium at 77 and
300 K (center and right, respectively)

The atomic absorption coefficient µ0 of the absorber atom embedded into its
environment has now to be determined, in order to calculate the EXAFS function
χ(k) = (µ − µ0)/µ0 (6.17). To evaluate µ0, one seeks a curve which suitably
averages the oscillations of the absorption coefficient. A frequently utilized approach
is based on polynomial splines (Fig. 6.12, right).

The visual inspection of the EXAFS signal can directly give qualitative informa-
tion. For example (Fig. 6.13) the EXAFS of crystalline germanium at 77 K is much
more structured than the one of amorphous germanium, since many coordination
shells contribute to the former, only one to the latter. When temperature increases,
the EXAFS of c-Ge becomes less structured, because thermal disorder more strongly
damps the contributions of the outer shells than of the first one.

6.6.2 Fourier Transform and Back-Transform

The direct quantitative analysis of the entire EXAFS signalχ(k), in principle feasible,
is seldom performed. In general, one prefers a different approach, which includes
the Fourier transform and back-transform of the EXAFS signal.

The Fourier transform from the space of wavevectors k to the conjugate space of
distances r is performed through the integral

F(r) =
kmax∫

kmin

χ(k) W (k) kn exp(2ikr) dk , (6.57)

where W (k) is a window function that reduces the spurious oscillations induced by
the finite k range. The factor kn is used to balance the low-k and high-k regions of
the spectrum (typically n = 1 − 3). The limits kmin and kmax are chosen so as to
exclude both the low-k signal, where the EXAFS formula is unreliable (typically
kmin > 2 − 4 Å−1), and the high-k signal, where the signal to noise ratio is small.
The Fourier transform F(r) of (6.57) is a complex function composed of a real and
an imaginary part, ReF(r) and ImF(r), respectively (Fig. 6.14). The modulus
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|F(r)| =
√

[ReF(r)]2 + [ImF(r)]2 (6.58)

is characterized by peaks in correspondence of the leading frequencies 2r of the χ(k)

signal, say of the most important scattering paths in real space (Fig. 6.14). In general,
the most prominent peaks correspond to single scattering paths (coordination shells).
The F(r) function is not a true radial distribution function: the positions of the peaks
are at slightly shorter distances, by about 0.2–0.3 Å, than the real distances, due to
the phase-shifts φs(k) present in the total phasesΦ = 2k Rs + φs of each scattering
path; besides, the shape of the peaks is strongly influenced by the artefacts of the
Fourier transform algorithm.

Important qualitative and sometimes also quantitative information is contained
in the Fourier transforms F(r). Let us consider some examples. (1) A non-zero
F(r) at shorter distances than the first-shell peak suggests a poor evaluation of
the atomic absorption coefficient µ0, which introduced unphysical low-frequency
oscillations. (2) The height of the peaks depends on the coordination number and
on the degree of thermal and structural disorder. (3) The Fourier transforms allows a
direct visual evaluation of the effects of temperature, pressure, chemical environment
on a given sample (Fig. 6.15). (4) The comparison between Fourier transforms of
different samples allows one to evaluate differences in distances or disorder effects
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(Fig. 6.15). (5) Peaks not corresponding to possible inter-atomic distances can be due
to non-negligible multiple scattering effects.

The contribution of a given set of scattering paths can be singled out by an inverse
Fourier transform within a distance interval rmin to rmax, with window W ′(r):

χ ′(k) = (2/π)

rmax∫

rmin

F(r) W ′(r) exp(−2ikr) dr. (6.59)

The back-transform χ ′(k) is a complex function, whose real part corresponds to the
sought filtered signal χ̃(k). The filtered signal χ̃(k) is significantly different from
the original signal χ(k) owing to the artefacts introduced by the procedure of Fourier
transform and back-transform.

6.6.3 Quantitative Determination of Structural Parameters

The final step of EXAFS analysis consists in the quantitative evaluation of the
structural parameters: average inter-atomic distances ⟨r⟩, coordination numbers N ,
Debye-Waller exponents σ 2. If the first-shell contribution is well singled out in the
Fourier transform F(r), the corresponding back-transformed signal χ̃(k) can be
safely analysed within the single scattering approximation. The outer shell contribu-
tions cannot generally be completely disentangled and are mixed with contributions
from multiple scattering paths, which cannot be neglected in refined analyses. In
any case, according to (6.33), to obtain the values of the structural parameters from
an experimental EXAFS spectrum, one must know the scattering amplitudes | f (k)|,
phase-shifts φ(k) and inelastic factors S2

0 and λ(k) of each relevant scattering path.
Most available software packages [19–21] allow a sorting of all the relevant sin-

gle and multiple scattering paths for a given model structure, as well as the ab-initio
calculation of scattering amplitudes and phasesihfts for the different scattering paths
and an evaluation of the mean free path λ(k). It is thus possible to simulate a theoreti-
cal EXAFS function χsim(k) for the given model structure. The structural parameters
of the studied system can be obtained by building up a suitable starting model struc-
ture, calculating χsim(k) for the model structure, comparing with the experimental
EXAFSχexp(k) and refining, by a best-fitting procedure, the values of the parameters,
including the edge shift E0 = Eb − Es .

In principle, the fit of theory to experiment could be done over the entire original
EXAFS spectrum. More frequently, the fit is limited to a filtered portion of the signal,
corresponding for example to the first shell, or to an interval of distances including
a number of coordination shells. The comparison of theory with experiment can be
done in the r space after Fourier transform or on the k space after back-transform.
In any case, since Fourier transforms introduce distortions, it is strictly necessary
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that both calculated and experimental EXAFS spectra undergo exactly the same
transform procedures before comparison.

The maximum number of independent parameters that can reasonably be obtained
from an EXAFS spectrum depends on the quantity and quality of available infor-
mation. According to a conservative rule of thumb based on information theory,
the maximum number of independent parameters obtainable from a Fourier filtered
EXAFS signal is

nind ≃ (2∆k∆r)/π, (6.60)

where ∆k = kmax − kmin and ∆r = rmax − rmin are the intervals of the direct and
inverse Fourier transforms, respectively.

As for any experimental result, the values of structural parameters obtained from
EXAFS analysis are meaningless if not accompanied by a reliable estimate of their
uncertainties (error bars). A sound evaluation of error bars is far from trivial [24].
Starting point is in any case the repetition of measurements, at least twice or thrice
and possibly in condition of independence.
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