RubricaRubrica Cerca nel sitoCerca nel sito ModulisticaModulistica WebmailWebmail
Il Dipartimento sui social: Seguici su Facebook Seguici su Facebook Seguici su Youtube

Contenuti pagina [0] | Menù [1] | Copyright e credits [2]

Dipartimento di Fisica

Sei in »» Plasmonic Bio-Assemblies and Nanostructures: Chirality, Coherent Transfer of Plasmons and Generation of Hot Electrons » Seminari Pubblici » Leggi

Plasmonic Bio-Assemblies and Nanostructures: Chirality, Coherent Transfer of Plasmons and Generation of Hot Electrons
Speaker Speaker: Prof. Alexander O. Govorov
Affiliato Affiliato: Department of Physics and Astronomy, Ohio University, Athens, USA;
Data Evento Mercoledì 12 Giugno , alle ore 16.00 - Aula Seminari Cubo 31C
Plasmonic nanostructures and metamaterials are very efficient at absorption and scattering of light. The studies to be presented in this talk concern special designs of hybrid nanostructures with electromagnetic hot spots, where the electromagnetic field becomes strongly enhanced and spatially concentrated. Overall, plasmonic nanostructures with hot spots demonstrate strongly amplified optical and energy-related effects, and this talk will review some of such phenomena. (1) Using nanoparticle arrays made of different metals, one can transfer plasmonic signals coherently and with very small losses [1]. (2) Plasmonic hot spots efficiently generate energetic electrons, which can be used for photochemistry and photodetection [2,3]. (3) Nanostructures with small interparticle gaps can strongly enhance the optical generation of heat, and also confine high photo-temperatures in small volumes [4,5,6]. (4) Colloidal nanocrystal assemblies and metasurfaces with plasmon resonances allow us to strongly enhance the chiral optical responses (circular dichroism) of biomolecules and to induce chiral photo-chemical effects [7,8,9].

References
[1] E.-M. Roller, et al., Nature Physics, 13, 761 (2017).
[2] A.O. Govorov, H. Zhang, H.V. Demir and Y. K. Gun’ko, Nano Today 9, 85 (2014).
[3] H. Harutyunyan, et al., Nature Nanotech. 10, 770 (2015).
[4] A. O. Govorov and H. Richardson, Nano Today 2, 20 (2007).
[5] C. Jack, et al., Nat. Commun. 7, 10946 (2016).
[6] X.-T. Kong, et al., Nano Letters, 18, 2001 (2018).
[7] A. O. Govorov, et al., Nano Letters 10, 1374–1382 (2010).
[8] A. Kuzyk, et al., Nature 483, 311 (2012).
[9] T. Liu, et al., Nano Letters, DOI: 10.1021/acs.nanolett.8b05179 (2019).